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A B S T R A C T   

In next-generation mobile and wireless communication systems, low sintering temperature and excellent 
dielectric properties are synergistic objectives in the application of dielectric resonators/filters. In this work, 
Li2Ti0⋅98Mg0⋅02O2⋅96F0.04–1 wt% Nb2O5 (LTMN) ceramics were fabricated, and their sintering temperature was 
successfully lowered from 1120 ◦C to 750 ◦C by adjusting the mass ratio of B2O3–CuO (BC) additive. The op
timum dielectric properties (ԑr ~ 24.44, Q × f ~ 60,574 GHz and τf ~ 22.8 ppm/◦C) were obtained in BC- 
modified LTMN ceramics sintered at 790 ◦C. Even if their sintering temperature was lowered to 750 ◦C, the 
lowest temperature among the Li2TiO3-based dielectric ceramics currently used for LTCC technology, excellent 
dielectric properties (ԑr ~ 23.77, Q × f ~ 51,636 GHz) were still maintained. Additionally, no extra impurity 
phase was detected in BC-modified LTMN ceramics co-fired with Ag at 790 ◦C, indicating that BC-modified LTMN 
ceramics have a bright prospect in high-performance LTCC devices for 5G applications.   

1. Introduction 

With the rapid development of fifth-generation (5G) communication 
technology, the application of Massive MIMO (large-scale antenna ar
rays) and AAU (active antenna unit) RF technology has put higher re
quirements on the miniaturization and integration of 5G base stations 
[1]. 

Low temperature co-fired ceramic (LTCC) technology has been 
proven to be one of the most effective ways to reduce device size and 
circuit area. Many high-performance communication devices have been 
manufactured, such as LC filters, GPS antennas, phase-controlled radars, 
circuit substrates, and dielectric resonators etc. [2–4]. It is well known 
that the electromagnetic wave oscillation occurs inside the dielectric 
ceramic devices, and the quality factor of devices is closely related to 
dielectric loss, so, higher requirements for LTCC materials are proposed 
[1]: (1) appropriate dielectric constant (ԑr:5–25); Suitable dielectric 
constant is beneficial to reducing device size and realize lower 
time-delay as the following equations described [5,6]. 

λr =
λ0
̅̅̅̅εr

√ (1)  

where λ0 and λr are wavelength in vacuum and dielectric with εr value, 
respectively. 

TPD =
l

̅̅̅̅
λr

√

C
(2)  

where l is transmission distance, C is the speed of light in vacuum, and 
TPD is the time-delay of signal propagation. (2) low dielectric loss (Q =
1/tanδ, Q × f > 50,000 GHz); Improved Q × f value is beneficial to 
reducing crosstalk between signal channels, and increasing the power 
capacity of devices, which is significantly required performance by 5G 
communication devices [5]. (3) near-zero temperature coefficient of 
resonant frequency (τf); A near-zero temperature coefficient of resonant 
frequency means that the operating frequency of devices will be limit
edly affected by temperature, indicating a higher temperature-reliability 
[7–9]. What’s more, an important requirement for LTCC is the ability to 
co-fire with Ag electrodes below 961 ◦C without additional chemical 
reactions [3,10,11]. However, traditional microwave dielectric ceramics 
are hard to meet the requirement of LTCC technology due to a higher 
sintering temperature. 

Currently, low sintering temperature (<961 ◦C) materials for LTCC 
devices can be prepared by four methods. Firstly, glass-ceramics/glass- 
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ceramic composites are always used as the matrix phase and the 
sinterability and dielectric properties of matrix can be modified by other 
additives [3,12–16]. However, there still exists some shortcomings in 
the preparation process, such as composition volatizing and unstable 
dielectric performance. In addition, glass-ceramic composites are 
readily reacted with metal electrode, resulting in an inevitable decline of 
dielectric properties [17–20]. Secondly, novel microwave dielectric 
material systems are developed, which possess inherently low sintering 
temperature (such as MoO3, TeO2, P2O5, WO3, Bi2O3 and V2O5-based 
compounds) [3,21–27]. However, there are many shortages in this 
method, such as costly (TeO2), poisonous raw materials (V2O5, WO3), 
low Q × f values (<50,000 GHz), and large τf values (|τf| > 30 ppm/◦C), 
which inhibit their wide application in LTCC devices. Thirdly, chemi
cally synthesized nano-powders are used as raw materials to reduce the 
sintering temperature for ceramic densification. While it is a costly and 
time-consuming method. Fourthly, sintering aids/low melting-point 
oxides are added to ceramics, which is viewed as a widely used 
method to obtain high-performance materials of LTCC devices. 

With the deepening of research on lithium-based dielectric ceramics, 
Li2TiO3 dielectric ceramic has attracted great attention due to its 
excellent dielectric properties (εr = 21–25, Q × f = 31,236–71,000 GHz, 
and τf = 20–38.5 ppm/◦C), relatively lower sintering temperature 
(~1230 ◦C), small density (~3.1 g/cm3), and lower cost [1]. In our 
research group, Li2Ti0⋅98Mg0⋅02O2⋅96F0.04–1 wt% Nb2O5 (abbreviated 
LTMN) ceramic sintered at 1120 ◦C with superior dielectric properties 
(ԑr ~ 22.78, Q × f ~116,927 GHz, τf ~ 31.6 ppm/◦C) is developed, 
which is a promising candidate for LTCC applications. However, the 
sintering temperature of LTMN ceramic (1120 ◦C) is too high to co-fire 
with silver electrode (961 ◦C), so lowering its sintering temperature 
becomes the new research focus. Recently, some studies have shown 
that the sintering temperature of dielectric ceramics can be effectively 
reduced by adding a small amount of CuO/B2O3. For example, Ding 
et al. [28]revealed that adding B2O3–CuO (BC) to 3Li2O-Nb2O5-6TiO2 
could lower sintering temperature from 1125 ◦C to 900 ◦C with dielec
tric properties of εr ~ 52, Q × f ~ 12,000 GHz, and τf ~ 32.3 ppm/◦C. 
Zhang et al. [29]found that the sintering temperature of CoTiNb2O8 
added with CuO could be reduced from 1250 ◦C to 950 ◦C. Zhang et al. 
[30] reported that adding B2O3 to Li3Mg2NbO6 could lower its sintering 
temperature from 1250 ◦C to 900 ◦C. Thus, reducing the sintering 
temperature of LTMN ceramic by the addition of B2O3 and CuO aids is 
hopeful and meaningful. 

In this work, B2O3 and CuO mixture in different ratios was intro
duced to LTMN ceramic to achieve a lower sintering temperature. Mi
crowave dielectric properties, microstructure, sintering characteristics 
and structural evolution were studied comprehensively. Moreover, 
chemical compatibility study was performed by 25 wt% Ag and BC- 
doped LTMN ceramics cofired at the optimum sintering temperature. 

2. Experimental procedure 

Some raw materials for synthesizing LTMN ceramic of Li2CO3, MgF2 
(98.0%, 99.99%, Yuan Li), TiO2 (99.0%, Peng Da) were pre-prepared 
according to the stoichiometric formulation Li2Ti0⋅98Mg0⋅02O2⋅96F0.04 
(abbreviated LTM). Firstly, these oxide powders were weighed with an 
electronic balance according to the molecular formula, then ball-milled 
with ethanol in a nylon tank for 12 h. Secondly, the slurries were dried in 
a thermostat, and calcined at 800 ◦C for 4 h. Thirdly, the calcined 
powders were mixed with 1 wt% Nb2O5 (99.99%, Jiu Jiang) and 1 wt% 
B2O3–CuO (98.0%–99.0%, Jiang Tian, Yuan Li; abbreviated BC), and re- 
milled in ethanol medium for 12 h. The mass ratio of CuO to B2O3 (x:y) 
was 1.0:1.2, 1.0:1.0, 1.2:1.0 and 1.4:1.0, and BC-doped LTMN samples 
were named BC112 (x:y = 1.0:1.2), BC11 (x:y = 1.0:1.0), BC121 (x:y =

Fig. 1. (a) XRD patterns of pure LTMN, BC112, BC11, BC121, and BC141 
specimens sintered at optimum temperature for 4 h, respectively. (b) Variation 
of XRD pattern with sintering temperature for BC11 composition. (c) The 
locally enlarged diffraction peaks of (002) for all samples. 

Table 1 
Structure parameters of nine samples.  

Samples a(Å) b(Å) c(Å) Vcell 

(Å3) 
Rp 

(%) 
Rwp 

(%) 

LTMN 
(1120 ◦C) 

5.05670 8.77950 9.72754 425.38 8.19 10.68 

BC112 
(800 ◦C) 

5.06053 8.76793 9.74077 425.96 8.35 11.24 

BC121 
(790 ◦C) 

5.06375 8.76739 9.73953 426.12 7.79 10.17 

BC141 
(850 ◦C) 

5.06261 8.77327 9.74138 426.21 8.84 10.59 

BC11 
(770 ◦C) 

5.05623 8.77514 9.73712 425.71 8.75 9.91 

BC11 
(780 ◦C) 

5.05184 8.78558 9.72908 425.95 8.47 10.26 

BC11 
(790 ◦C) 

5.06252 8.77148 9.74220 426.09 7.16 9.48 

BC11 
(800 ◦C) 

5.05454 8.77494 9.74593 426.11 8.45 9.63 

BC11 
(810 ◦C) 

5.05796 8.78640 8.729453 426.16 8.99 10.05  
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1.2:1.0) and BC141 (x:y = 1.4:1.0), orderly. Fourthly, the dried powders 
were mixed with 4 wt% paraffin, then the mixture was uniaxially 
pressed into cylinder (diameter ~ 10 mm, height ~ 4 mm). Finally, these 
samples were sintered at 750–870 ◦C in air for 4 h. To investigate the 
chemical compatibility between Ag and BC11 ceramic, the mixture of 
25 wt% Ag powder and BC11 powders was sintered at 790 ◦C for 4 h. 

The crystal phase of sintered specimens was investigated via X-ray 
diffraction with CuKα radiation (D/MAX-2500). The micro-surface 
morphology of sintered ceramics was observed using scanning elec
tron microscopy (FE-SEM, S-4800). The Raman spectra of BC-doped 
LTMN specimens was recorded by a Raman spectrometer (Raman, 
DXR Microscope), which equipped with a 532 nm laser source. The 
lattice parameters of BC-doped LTMN ceramics were obtained by Riet
veld refinement with GSAS software. The grain size was measured with 
Nano Measurer 1.2 software, and the bulk densities (ρ) of BC-doped 
LTMN specimens were measured via the Archimedes’ method. The 
theoretical densities (ρthe) and relative densities (ρrel) could be calculated 
according to following equations [31,32]: 

ρthe =
AZ

NAV
(3)  

ρrel =
ρ

ρthe
× 100% (4)  

where A represents atomic weight, and Z represents the number of 
molecules in a single unit cell. NA and V are Avogadro constant and unit 
cell volume, respectively. 

The relative dielectric constants (εr) of sintered samples were 
measured via Hakki-Coleman′s method and characterized by network 
analyzer (Agilent 8720 ES). The transmission cavity method was used to 
test the quality factor (Q × f) with the network analyzer. The resonant 
frequencies of samples sintered at optimum temperature were measured 
in the temperature range of − 40 ◦C–120 ◦C, and temperature coefficient 
(τf) of the resonant frequency was characterized with the following 
formula: 

TCF(τf )=
(fT2 − fT1) × 106

fT1(T2 − T1)
(5)  

where fT1 and fT2 are the resonance frequency of T1 and T2 temperature, 
respectively. 

3. Results and discussion 

The XRD patterns of BC-doped LTMN ceramics sintered at optimum 
temperature are shown in Fig. 1(a). All diffraction peaks could be 
indexed in terms of Li2TiO3 phase (JCPDS #33–0831). Although x:y 
changed from 1.0:1.2 to 1.4:1.0, extra peak was not detected in the curve 
of BC-doped LTMN, which indicated that the liquid phase of BC was not 
crystallized in LTMN ceramic and existed in the form of amorphous state 
after sintering process [1,33–35]. The second phase was also not 
detected in the XRD pattern of BC11 as the sintering temperature 
changed from 770 ◦C to 810 ◦C, as shown in Fig. 1(b). Moreover, the 
shift of (002) diffraction peak is displayed in Fig. 1(c). It could be 
observed that (002) diffraction peak gradually shifted to a low degree as 
the sintering temperature of the BC11 ceramic increased, which indi
cated an expansion in unit cell volume based on the Bragg’s formula 
(2dsinθ = nλ) [36]. The lattice parameters and Rietveld refinement 
patterns of BC-doped LTMN ceramics are shown in Table 1 and Fig. 2, 
respectively. Notably, the Rietveld refinement further proved that the 
cell volume of BC11 expanded as the sintering temperature increased. 
This result may be attributed to the substitution of Li+ and Ti4+ (the 
average ions radius of Li+ and Ti4+: Raver = 0.708 Å) ions by Cu2+

(Rcu2+=0.73 Å) in BC11 ceramic. 
Fig. 3 gives the Raman spectra of LTMN, BC112, BC11, BC121, and 

BC141 specimens sintered at the optimum temperatures, respectively. 
Based on the reported literatures [1,37–39], the distribution of Raman 
peak/band for Li2TiO3-based ceramics was summarized. The Raman 
peak at 212 cm− 1 could be assigned to bending vibration of O–Ti–O, and 
250-350 cm− 1 could be attributed to the stretching vibration of Li–O and 
the bending vibration of O–Li–O. The Raman band at 550-700 cm− 1 

Fig. 2. Rietveld refinement patterns of five samples.  
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could be regarded as the stretching vibration of Ti–O. As we all know, 
the Raman spectroscopy and Raman stretching modes are closely related 
to short-range order and neighboring disorder (such as electrical defects 
caused by substitutions or vacancies), respectively [22]. For example, 
the Raman peak of BC-modified LTMN ceramics slightly broadened at 
350 cm− 1 compared with pure LTMN, which might be related to a 

decrease in cation ordering [1]. The Raman fitting is shown in Fig. 3(b) 
and (c), and the fitted full width at half maxima (FWHM) information is 
listed in Table 2. As discussed above, the slight addition of BC could not 
affect the phase composition of LTMN ceramic, which was confirmed by 
Raman spectroscopy and X-ray diffraction, but it would have a slight 
impact on its microstructure. 

Fig. 4(a) shows the bulk and relative densities of BC112, BC11, 
BC121, and BC11 ceramics sintered at optimum temperature, respec
tively. It could be observed that the bulk densities of four samples varied 
between 3.372 and 3.384 g/cm3, and relative densities were located in 
98.5%–98.8% (>95%), which indicated that BC-modified samples 
reached densification. Furthermore, the optimum sintering temperature 
was closely related to the composition of ceramic samples. It was 
observed that the optimum sintering temperature sharply increased 
from 790 ◦C to 850 ◦C as x:y changed from 1.0:1.2 to 1.4:1.0. Although 
the relative densities of BC141 and BC11 were very close, the sintering 
temperature of the former was nearly 60 ◦C higher than that of the latter. 
Therefore, BC11 was selected as a further research object, and the bulk 
and relative density of BC11 sintered at various temperatures were 
measured. Under the same mass ratio, the relative density of BC11 

Fig. 3. (a) The Raman spectra of LTMN, BC112, BC11, BC121 and BC141 ce
ramics sintered at the optimum sintering temperature for 4 h, respectively. (b) 
and (c) The experimental (pentagon and triangle) and fitted (black solid line) 
Raman spectra of LTMN and BC11 ceramics sintered at optimal temperatures. 
(The short-dashed lines are the Gaussian-Lorentzian mode fitting). 

Table 2 
The full width at half maxima of five samples.  

Samples LTMN BC112 BC11 BC121 BC141 

FWHM350cm− 1  13.169 13.198 13.525 13.749 15.391  

Fig. 4. (a) The bulk densities of BC112, BC11, BC121 and BC141 ceramics 
sintered at optimum temperature, respectively. (b) The bulk densities of BC11 
ceramics as a function of sintering temperature. (The insets show the relative 
density of each BC-doped specimens). 
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ceramic changed slightly. When sintering temperature reached 780 ◦C, 
the relative density gradually increased, then a saturation value was 
obtained at 790 ◦C as shown in Fig. 4(b). This indicates that BC additive 
could effectively lower sintering temperature and promote the sinter
ability of LTMN specimen. 

The SEM images of LTMN and BC-modified LTMN ceramics are 
shown in Fig. 5. Fig. 6(a)-(e) illustrate the grain-size distribution of BC- 
modified and LTMN ceramics. The grain size of BC-modified LTMN 
specimens was relatively smaller than LTMN due to the decrease in 
sintering temperature [40], but it was relatively uniform and 
well-arranged. Fig. 5(a)–(c) and (f) present the microtopography of the 
LTMN ceramic with the addition of different mass ratio of BC. When x:y 
was 1.0:1.2, the mean grain size of BC112 (0.66 μm) was relatively 
larger compared with BC11 (0.48 μm) and BC121 (0.41 μm), as shown in 
Fig. 5(a). When x:y increased to 1.0:1.0 and 1.2:1.0, the grains of BC11 
and BC121 were arranged more uniformly, as shown in Fig. 5(f), (b). In 
Fig. 5(c), the microstructure became more compact and grains became 
more uniform when x:y is 1.4:1.0. This phenomenon indicated that the 
addition of BC was an effective method to accelerate the sintering pro
cess, help to achieve uniform grains, and lower the sintering tempera
ture of LTMN specimen. Furthermore, the microstructural evolution of 
BC11 ceramic sintered at various temperatures is shown in Fig. 5(d)–(h). 
Some pores were left between the grains of BC11 ceramic sintered at 
780 ◦C. As the sintering temperature rose to 790 ◦C, the pores in BC11 

specimen gradually disappeared due to the growth of grains, and BC11 
showed a tight and uniform arrangement of grains. A large amount of 
liquid phase was generated and some large pores appeared in BC11 
specimen as the sintering temperature increased to 810 ◦C. This phe
nomenon may be caused by the evaporation of liquid phase during the 
sintering process [41]. In a word, a small amount of liquid phase was 
beneficial to the rearrangement and recrystallization of LTMN grains, 
while an excessive amount of liquid phase was harmful to sintering 
process. 

Fig. 7 displays εr of BC-modified LTMN ceramics as functions of BC 
ratio and sintering temperature. The porosity-corrected dielectric con
stants (εcorr) were also calculated to eliminate the effect of porosity [42]: 

εr = εcorr(1 −
3p(εcorr − 1)

2εcorr + 1
) (6)  

where εr and p are the measured dielectric constant and porosity, 
respectively. As x:y increased from 1.0:1.2 to 1.2:1.0, the εr fluctuated 
slightly between 23.5 and 24.44, and εcorr changed between 24.36 and 
24.75. With a fixed composition BC141, the εr of BC-modified samples 
increased with increasing sintering temperature, after that reached a 
saturate value ~24.5. The variation trend of ԑr in BC-modified speci
mens was similar to bulk density. A higher density for a ceramic body 
meant there were more dipoles in a unit volume and the ceramic was 

Fig. 5. (a)–(c) The SEM images of BC112, BC121, and BC141 ceramics sintered at optimum temperatures for 4 h, respectively. (d)–(h) Evolution of the micro
structure with sintering temperature for the BC11 composition. (i) LTMN ceramics sintered at 1120 ◦C for 4 h. 
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Fig. 6. Grain size distribution of BC-doped LTMN ceramics: (a) BC112, at 800 ◦C, (b) BC11, at 790 ◦C, (c) BC121, at 790 ◦C, (d) BC141, at 850 ◦C, (e) pure LTMN 
ceramic, at 1120 ◦C. 

D. Wang et al.                                                                                                                                                                                                                                   



Ceramics International 47 (2021) 28675–28684

28681

easier to be polarized [43,44]. This result also indicated that the bulk 
density was the major factor to control ԑr in BC-doped LTMN ceramics. It 
was noteworthy that the εr displayed a slight decrease after reaching 
maximum value. This may be ascribed to two reasons. The first one was 
the density, which was shown in Fig. 4. The relative densities of 
BC-doped LTMN specimens reached about 98.5%, but some pores left in 
BC-doped specimens, which resulted in a decrease of εr. The second 
reason was the low εr of BC. The εr decreased due to the generation of 
excessive liquid phase with lower εr as exceeding the optimal sintering 
temperature. 

The Q × f values of BC-doped LTMN ceramics followed a similar 
trend to the dielectric constants, as shown in Fig. 8. For BC11 ceramic, 
the optimized sintering temperature could be reduced to approximately 
790 ◦C. Even sintered at 750 ◦C, BC11 ceramic still retained a higher Q 
× f value (51,636 GHz). The improvement of Q × f value may be closely 

Fig. 9. The resonant frequencies of BC112(800 ◦C), BC11(790 ◦C), BC121 
(790 ◦C), and BC141(850 ◦C) specimens sintered at optimum temperature as a 
function of measured temperature. 

Fig. 10. The XRD patterns of BC11 ceramic doped with 25 wt% Ag powder 
sintered at 790 ◦C for 4 h. 

Fig. 8. The Q × f values of BC112, BC11, BC121, and BC141 ceramics as a 
function of sintering temperature, respectively. 

Fig. 7. Measured and porosity-corrected dielectric constants of LTMN ceramics 
with different BC additions as a function of sintering temperature. 
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related to the growth of grains, since larger grain-size specimens had 
fewer boundaries that were harmful to dielectric performances. As 
shown in Fig. 8, the Q × f value of BC141 increased with increasing 
sintering temperature and reached the maximum of 61,801 GHz at 
850 ◦C. The dielectric loss at microwave frequency can be attributed to 
intrinsic and extrinsic losses; The intrinsic losses were mainly controlled 
by lattice vibration modes, and the external loses were influenced by 
many factors, such as second phases, oxygen vacancies, grain sizes and 
densification [45]. As shown in Figs. 5(c) and Fig. 6(d), the most 
compact and uniform arrangement of grains were obtained in BC141 
ceramic, which explained that the optimum Q × f value was achieved in 
BC141. 

Fig. 9 displays the τf values of BC-modified LTMN ceramics sintered 
at optimum temperatures. As the temperature increased, a slight change 
in resonant frequency and an insignificant change in τf were observed. 
When x:y changed from 1.0:1.2 to 1.0:1.0, the τf value of BC-doped 
LTMN ceramic increased from 19.4 to 22.8 ppm/◦C. When x:y were 
1.2:1.0 and 1.4:1.0, the τf values for BC121 and BC141 ceramics were 
23.9 and 29.0 ppm/◦C, respectively. 

The sintering temperature (maximum 850 ◦C) of BC-doped LTMN is 
obviously lower than the melting point of silver (961 ◦C). The sintering 
temperature met the requirement of LTCC technology, but the chemical 
compatibility between ceramics and Ag electrodes was more important 
in the manufacture of LTCC devices [46]. Therefore, 25 wt% Ag powder 
and BC11 were uniformly mixed and co-fired at 790 ◦C in air ambient 
atmosphere for 4 h to verify the chemical compatibility between them. 
The XRD pattern of BC11 composition with Ag is illustrated in Fig. 10. It 
could be observed that no impurity phase appeared except for BC11 and 
Ag (JCPDS: 004–0783) diffraction phases. This result indicated that no 
additional phases were formed during the sintering process, and no 
chemical reaction occurred between BC11 and Ag, which was also 
confirmed by EDS elemental mapping analysis in Fig. 11(a)-(i). Among 
them, the bright color represented the Ag phase in Fig. 11(e). 

A summarization of the Q × f versus sintering temperature (ST) is 
illustrated for Li2TiO3-based [1,33,46,52,53,55–61,63] and some other 
low ST MWDCs [29,41,47–51,54,62], as shown in Fig. 12(a). Compared 
with the microwave dielectric properties of Li2TiO3-based ceramics re
ported in other literatures, it is easy to find that the ST of BC11 ceramic 
(with a higher Q × f value) is the lowest. Fig. 12(b) summarizes the 
dielectric performance (ԑr and ST) for these materials [1,33,41,46, 
48–67]. The dielectric constant of BC11 ceramic is located in the central 
position of Fig. 12(b). It can be seen that BC11 has suitable dielectric 
constant, which is conducive to achieve the miniaturization of 
communication devices and lower the time-delay of signals trans
mission. Besides, the extremely low ST can not only meet the needs of 
co-firing with the Ag electrode but also cater to the concept of 
energy-saving. In short, BC11 ceramic stand out among the reported 
LTCC materials due to its comprehensively superior performances. 

4. Conclusion 

In this paper, microstructure evolution, phase composition, and 
microwave dielectric performance of BC-doped LTMN specimens were 
studied systematically. It can be seen that the addition of BC could lower 
the sintering temperature of LTMN specimen to 790 ◦C without an 
evident decrease in microwave dielectric performance. For example, 
BC11 ceramic sintered at 790 ◦C exhibited superior microwave dielec
tric properties of ԑr ~24.44, Q × f ~60,574 GHz and τf ~22.8 ppm/◦C. 
Furthermore, excellent microwave properties of ԑr ~23.77 and Q × f 
~51,636 GHz were achieved in BC11 ceramic sintered at 750 ◦C, which 
was 370 ◦C lower than pure LTMN ceramic. Moreover, the great 
chemical compatibility between BC-doped LTMN ceramics and Ag was 
proved by XRD and EDS energy spectrum. This result reveals that BC- 
doped LTMN ceramics are a promising candidate for 5G LTCC materials. 

Fig. 11. The SEM images of (a) BC11 ceramic with 25 wt% Ag powder and corresponding EDS analysis surface scanning of (b) Ti element (c) O element (d) Nb 
element (e) Ag element (f) Mg element (g) Cu element (h) B element (i) F element. 
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